Vectors in Euclidean Spaces

Vectors.

e Economists usually work in the vector space R™. A point in this space is called
a vector, and is typically defined by its rectangular coordinates.

e Forinstance, letv € R™. We define this vector by its n coordinates, vy, va, . . . , Up.
It is common to write v = (v1,ve,...,v,) or to display a vector as a column
matrix:

U1

U2
v =

Un

e It is common to distinguish between locations and dispacements by writing a
location as a row vector and a displacement as a column vector. However, we
can use the same algebraic operations to work with each.

e A vector can be also be defined by its origin and end points.

e Suppose the vector v links the point P = (py, . .., py,) to the point @ = (q1, - - -, qn)
inR™ Thenv=Q — P,ie.v; =p;, —q;, Vi € {1,2,...,n}.
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Figure 1: The displacement (5, —3)

Addition.
e Given two vectors u and v, with coordinates, we add them like so:

U1 VU1 u1 + U1
U2 Vg Uz + V2

Un Un Up, + Up



U + Vg
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U1 Ul uy + v

Figure 2: Vector Addition

Scalar Multiplication.

e We can also multiply vectors by scalars. Suppose A € R and v € R". Scalar
multiplication gives a vector A\v € R", defined by
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Figure 3: Scalar multiplication

Subtraction.

e The difference of two vectors, say u — v, is the sum of the vector u with the
vector —v = (—1)w.

Uy U1 Uy — v

U2 V2 U2 — V2
u—v= ) +(=1) | . =

Un Un Up — Un

Laws of Vector Algebra.

e Let \,5 € R and u,v,w € R™. Then the following algebraic properties of
vectors hold.



u—v

Figure 4: Vector Subtraction

— Associativity:
(u+v)+w = u+ (v+w)
(AB)v = A(Bv)
— Commutativity:
ut+v = vtu
— Distributivity:
AMu+v) = du+
A+ 08)u = Iu+pu

Definition. Two vectors u,v € R"™ are parallel if there exists a real number A\ such
that u = Awv. A

The Inner Product.

Definition. Let u and v be two vectors in R™. The (Euclidean) inner product (also

called dot product or scalar product) of u and v is the real number, denoted u - v, given
by

UV = ULV + U2V + - -+ + UpVp
n
:Z’U,ﬂ}i A
i=1

e Note that if we think of w and v as n x 1 matrices, we have v - v = uTv = v u.

e If we think of them as 1 X n matrices, then u - v = uv? = vu?.

Laws of the Inner Product.
Let A € Rand u,v,w € R”. Then:

e Associativity:



Commutativity:

Distributivity:

Length and Inner Product.

Definition. The norm or length of a vector u is the real number, denoted ||u||, given by

lull = \/ud +uf + -+ A
Using our definition of the inner product we can also write this as

[ull = Vuu

The norm of a vector is always positive unless the vector is the zero vector, in
which case the norm is zero.

The distance between two vectors u, v € R is calculated as

o=l = V/ux =022+ = on)
Note that for any A € R and v € R":
[Aull = [Alllull-
We can show that
u-v = [lul[[v][ cos ¢
where 6 is the angle between the vectors u and v.

Using the properties of the cosine we get the following result.

Theorem 1. The angle between vectors u and v in R™ is

1.
2.
3.

acute, ifu-v > 0,
obtuse, if u - v < 0,

right, ifu - v = 0.

Definition. Let v be a vector. The vector w which points in the same direction as v,
but has length 1 is called the unit vector in the direction of v (or simply the direction

of v).

It is given by
v

= —. A
o]l

w



[

|lu|| cos @

Figure 5: The angle between two vectors u and v.

Definition. Two vectors u,v € R™ are orthogonal if u - v = 0. A
e This definition implies the zero vector is orthogonal to any vector.

Definition. Two vectors u, v € R are orthonormal if they are orthogonal and are unit
vectors. A

Theorem 2 (Triangle Inequality). For any two vectors u,v € R",
lu+ ol < fJull + [|vf]-

Theorem 3 (Triangle Inequality Variant). For any two vectors u,v € R",
ull =Nl < flu = o]l-

e There are three basic properties of Euclidean length for any vectors v and v and
scalar \:

1. |Jul]| > 0 and ||u|| = 0 only when u = 0,
2. [Palf = [A[fful;
3. flut ol < lull + o]l

Any assignment of a real number to a vector satisfying these properties is called
a norm (see sections 29.4 and 27 of S&B if interested).

Projections.

o Let u,v € R™. We want to find the vector projection of the vector u in the
direction of v.

e Denote the projection of u on v by P, (u). We can see from the diagram that the
length of P, (u) (called the scalar projection of vector u on v) is given by

1Py ()| = [l cos 6.
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|lu|| cos @

Figure 6: Projection of vector w in direction v

e The unit vector in the direction of v is
1

v
o]l

So we have ] cos 6
ul| cos
P,(u) = ———
: [[o]
Using our expression for the inner product u - v = ||ul|||v]| cos 8 we get

u-v
= ——.
[[v]?

Py (u)

e Note that if the vectors are parallel, say u = Av for some scalar A, then P, (u) =
u. This says that projecting a vector u in its own direction gives the same vector
U.
Lines.

e A straight line is completely determined by two things:

— apoint p € R" on the line, and
— adirection v € R™, with v # 0, in which to move from p.

A straight line £ in R™ can be defined in its parametric form as

(={zeR"|z=p+tv,t e R}

e So, a point z € R” belongs to the line ¢ iff there exists a real number ¢ such that
T =p+tu.

A straight line ¢ can also be defined by two distinct points P and Q).

— The vector v = Q — P gives the direction of the line.
— So then the line is just the set of points P + tv, with t € R.

e Now, P+tv=P+t(Q—P)=(1—1t)P+1tQ, so the line is
(={1-t)P+tQ €R" |t e R}



P+ tu

Figure 7: Parametric line £ in R2

Two-dimensional Planes.

e We saw that a line — a one-dimensional object — can be described using only one
parameter.

e A plane is two-dimensional, so we need two parameters.

e Consider a plane P in R? and let u and v be two vectors in P that point in
different directions:

Tl

Figure 8: A plane P through the origin in R®

e We can move from the origin in direction u, v or any combination of the two.
So, for any scalars s and ¢, the vector su + tv also lies in the plane P.

e Thus any plane P through the origin, in a vector space R™ (n > 2), can be
defined in its parametric form as

P={zeR"|z=su+tv,steR}
e But what if the plane does not pass through the origin?
e Suppose the plane does not pass throught the origin.

e We can move from point p in the plane in direction u, v or any combination of
the two. Thus the vector p + su + tv also lies in the plane P.
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Figure 9: A plane P not through the origin in R*

e So any plane P through the point p, in a vector space R™ (n > 2), can be defined
in its parametric form as

P={zeR"|z=p+su+tvstecR}

e A point x € R™ belongs to the plane P iff there exist two scalars s and ¢ such
that z = p+ su+tv. Equivalently, the vector z — p must be a linear combination
of the vectors u and v.

e As two points uniquely determine a line, three distinct (non-collinear) points P,
@ and R uniquely determine a plane.

— Letu = @ — Pand v = R — P. We can picture these as displacement
vectors from P:
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Figure 10: A plane 7 not through the origin in R?

e Remember, we need v and v to be nonparallel to for them to uniquely determine
a plane.



— If wand v are parallel, then there exists a scalar A such that v = Au. But by
definition of u and v, it would then be the case that R = (1 — \)P + \Q.

— But then the points lie on a line ¢ and so are collinear.
e The plane containing the three points P, () and R is
P={(1-s—-t)P+sQ+tR|stcR},
or equivalently
P={tpP+tgQ+trR|tp,tg,tr € Randtp +tg +tg = 1},
e We can also completely describe a plane using

— apoint p = (9, Yo, 20) € R? in the plane, and
— an inclination, specified by a vector n = (a,b,c) € R3, called a normal
vector, which is perpendicular to the plane.

Mo

Figure 11: A plane P through p with normal n

e Let ¢ = (z,y, 2) be an arbitrary point on the plane P. Then ¢ — p is a vector in
the plane and will thus be perpendicular to n.

e Two vectors are orthogonal iff their dot product is zero, so the plane is defined as
P ={q€R’|n.(¢—p) =0}
e Now, for any point ¢ in the plane
0=n.(¢g —p) = (a,b,c).(x — xo,y — Yo, 2 — 20),

or
a(z — xo) + by — yo) + c(z — 20) = 0.

e So another way to write the nonparametric equation of a plane, is
ax + by + cz = d,

where d = axg + byo + czo. This is called the point-normal equation of the
plane.



Hyperplanes.
e We saw a line in R? can be written as
a1r1 + asxe =d
and a plane in R? can be written in point-normal form as

a1, + @222 + azxrz = d.

e Generalizing, a hyperplane in R™ can be written in point-normal form as
a1x1 + asxo + - + apx, =d,
where (a1, as,...,a,) is a normal.

— The set of vectors in the hyperplane have tail at (0,...,0,d/a,) and are
perpindicular to the normal vector to the hyperplane.

Example 1.
1. An economic application you have probably seen deals with commodity spaces.

e The vector
x=(x1,2Z2,...,2y)

of nonnegative quantities of 7 commodities is called a commodity bundle.
The set of all commodity bundles is the set

{(x1,...y2n) |21 > 0,...,2, >0}

and is called a commodity space.

e Let p; > 0 be the price of commodity 7. The cost of buying bundle z is
P1T1 +P2¥2 + -+ Pplp =P - T.

A consumer with income [ can purchase only bundles x for which p-x < I.
This subset of the commodity space is the consumer’s budget set.

1. e The budget set is bounded above by the hyperplane p-x = I, whose normal
vector is the price vector p.
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Figure 12: A consumer’s budget set, p - < I, in commodity space.
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2.

o Another hyperplane you will see is the space of probability vectors

Pn:{(plaap2)|P1207,Pnzoandp1++pn:1},

which is called the probability simplex. The probability simplex P, is part
of a hyperplane in R™ with normal vector (1,1,...,1). ¢

b2

D1

p3
Figure 13: The probability simplex for n = 3.
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