
Vectors in Euclidean Spaces
Vectors.

• Economists usually work in the vector space Rn. A point in this space is called
a vector, and is typically defined by its rectangular coordinates.

• For instance, let v ∈ Rn. We define this vector by its n coordinates, v1, v2, . . . , vn.
It is common to write v = (v1, v2, . . . , vn) or to display a vector as a column
matrix:

v =


v1
v2
...
vn


• It is common to distinguish between locations and dispacements by writing a

location as a row vector and a displacement as a column vector. However, we
can use the same algebraic operations to work with each.

• A vector can be also be defined by its origin and end points.

• Suppose the vector v links the pointP = (p1, . . . , pn) to the pointQ = (q1, . . . , qn)
in Rn. Then v = Q− P , i.e. vi = pi − qi, ∀i ∈ {1, 2, . . . , n}.
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Figure 1: The displacement (5,−3)

Addition.

• Given two vectors u and v, with coordinates, we add them like so:

u+ v =


u1

u2

...
un

 +


v1
v2
...
vn

 =


u1 + v1
u2 + v2

...
un + vn

 .
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Figure 2: Vector Addition

Scalar Multiplication.

• We can also multiply vectors by scalars. Suppose λ ∈ R and v ∈ Rn. Scalar
multiplication gives a vector λv ∈ Rn, defined by

λv =


λv1
λv2

...
λvn



u

−2u

v
1
2vw

3w

Figure 3: Scalar multiplication

Subtraction.

• The difference of two vectors, say u − v, is the sum of the vector u with the
vector −v = (−1)v.

u− v =


u1

u2

...
un

 + (−1)


v1
v2
...
vn

 =


u1 − v1
u2 − v2

...
un − vn

 .

Laws of Vector Algebra.

• Let λ, β ∈ R and u, v, w ∈ Rn. Then the following algebraic properties of
vectors hold.
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Figure 4: Vector Subtraction

– Associativity:

(u+ v) + w = u+ (v + w)
(λβ)v = λ(βv)

– Commutativity:

u+ v = v + u

– Distributivity:

λ(u+ v) = λu+ λv

(λ+ β)u = λu+ βu

Definition. Two vectors u, v ∈ Rn are parallel if there exists a real number λ such
that u = λv. N

The Inner Product.

Definition. Let u and v be two vectors in Rn. The (Euclidean) inner product (also
called dot product or scalar product) of u and v is the real number, denoted u · v, given
by

u · v = u1v1 + u2v2 + · · ·+ unvn

=
n∑

i=1

uivi N

• Note that if we think of u and v as n× 1 matrices, we have u · v = uT v = vTu.

• If we think of them as 1× n matrices, then u · v = uvT = vuT .

Laws of the Inner Product.
Let λ ∈ R and u, v, w ∈ Rn. Then:

• Associativity:

(λu) · v = λ(u · v)
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• Commutativity:

u · v = v · u

• Distributivity:

u · (v + w) = u · v + u · w

Length and Inner Product.

Definition. The norm or length of a vector u is the real number, denoted ‖u‖, given by

‖u‖ =
√
u2

1 + u2
2 + · · ·+ u2

n. N

• Using our definition of the inner product we can also write this as

‖u‖ =
√
u.u

• The norm of a vector is always positive unless the vector is the zero vector, in
which case the norm is zero.

• The distance between two vectors u, v ∈ Rn is calculated as

‖u− v‖ =
√

(u1 − v1)2 + · · ·+ (un − vn)2.

• Note that for any λ ∈ R and u ∈ Rn:

‖λu‖ = |λ|‖u‖.

• We can show that
u · v = ‖u‖‖v‖ cos θ

where θ is the angle between the vectors u and v.

• Using the properties of the cosine we get the following result.

Theorem 1. The angle between vectors u and v in Rn is

1. acute, if u · v > 0,

2. obtuse, if u · v < 0,

3. right, if u · v = 0.

Definition. Let v be a vector. The vector w which points in the same direction as v,
but has length 1 is called the unit vector in the direction of v (or simply the direction
of v). It is given by

w =
v

‖v‖
. N
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Figure 5: The angle between two vectors u and v.

Definition. Two vectors u, v ∈ Rn are orthogonal if u · v = 0. N

• This definition implies the zero vector is orthogonal to any vector.

Definition. Two vectors u, v ∈ R are orthonormal if they are orthogonal and are unit
vectors. N

Theorem 2 (Triangle Inequality). For any two vectors u, v ∈ Rn,

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Theorem 3 (Triangle Inequality Variant). For any two vectors u, v ∈ Rn,

|‖u‖ − ‖v‖| ≤ ‖u− v‖.

• There are three basic properties of Euclidean length for any vectors u and v and
scalar λ:

1. ‖u‖ ≥ 0 and ‖u‖ = 0 only when u = 0,

2. ‖λu‖ = |λ|‖u‖,
3. ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Any assignment of a real number to a vector satisfying these properties is called
a norm (see sections 29.4 and 27 of S&B if interested).

Projections.

• Let u, v ∈ Rn. We want to find the vector projection of the vector u in the
direction of v.

• Denote the projection of u on v by Pv(u). We can see from the diagram that the
length of Pv(u) (called the scalar projection of vector u on v) is given by

‖Pv(u)‖ = ‖u‖ cos θ.
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Figure 6: Projection of vector u in direction v

• The unit vector in the direction of v is

1
‖v‖

v.

So we have

Pv(u) =
‖u‖ cos θ
‖v‖

v.

Using our expression for the inner product u · v = ‖u‖‖v‖ cos θ we get

Pv(u) =
u · v
‖v‖2

v.

• Note that if the vectors are parallel, say u = λv for some scalar λ, then Pv(u) =
u. This says that projecting a vector u in its own direction gives the same vector
u.

Lines.

• A straight line is completely determined by two things:

– a point p ∈ Rn on the line, and
– a direction v ∈ Rn, with v 6= 0, in which to move from p.

• A straight line ` in Rn can be defined in its parametric form as

` = {x ∈ Rn | x = p+ tv, t ∈ R}

• So, a point x ∈ Rn belongs to the line ` iff there exists a real number t such that
x = p+ tv.

• A straight line ` can also be defined by two distinct points P and Q.

– The vector v = Q− P gives the direction of the line.
– So then the line is just the set of points P + tv, with t ∈ R.

• Now, P + tv = P + t(Q− P ) = (1− t)P + tQ, so the line is

` = {(1− t)P + tQ ∈ Rn | t ∈ R}
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p+ tv
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Figure 7: Parametric line ` in R2

Two-dimensional Planes.

• We saw that a line – a one-dimensional object – can be described using only one
parameter.

• A plane is two-dimensional, so we need two parameters.

• Consider a plane P in R3 and let u and v be two vectors in P that point in
different directions:

x1

x2

x3

u

v

Figure 8: A plane P through the origin in R3

• We can move from the origin in direction u, v or any combination of the two.
So, for any scalars s and t, the vector su+ tv also lies in the plane P .

• Thus any plane P through the origin, in a vector space Rn (n > 2), can be
defined in its parametric form as

P = {x ∈ Rn | x = su+ tv, s, t ∈ R}

• But what if the plane does not pass through the origin?

• Suppose the plane does not pass throught the origin.

• We can move from point p in the plane in direction u, v or any combination of
the two. Thus the vector p+ su+ tv also lies in the plane P .
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Figure 9: A plane P not through the origin in R3

• So any plane P through the point p, in a vector space Rn (n > 2), can be defined
in its parametric form as

P = {x ∈ Rn | x = p+ su+ tv, s, t ∈ R}

• A point x ∈ Rn belongs to the plane P iff there exist two scalars s and t such
that x = p+su+ tv. Equivalently, the vector x−pmust be a linear combination
of the vectors u and v.

• As two points uniquely determine a line, three distinct (non-collinear) points P ,
Q and R uniquely determine a plane.

– Let u = Q − P and v = R − P . We can picture these as displacement
vectors from P :

x1

x2

x3

P
u

Q

v

R

Figure 10: A plane P not through the origin in R3

• Remember, we need u and v to be nonparallel to for them to uniquely determine
a plane.
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– If u and v are parallel, then there exists a scalar λ such that v = λu. But by
definition of u and v, it would then be the case that R = (1− λ)P + λQ.

– But then the points lie on a line ` and so are collinear.

• The plane containing the three points P , Q and R is

P = {(1− s− t)P + sQ+ tR | s, t ∈ R},
or equivalently

P = {tPP + tQQ+ tRR | tP , tQ, tR ∈ R and tP + tQ + tR = 1},

• We can also completely describe a plane using

– a point p = (x0, y0, z0) ∈ R3 in the plane, and
– an inclination, specified by a vector n = (a, b, c) ∈ R3, called a normal

vector, which is perpendicular to the plane.

x1

x2

x3

p

n

q − p

q

Figure 11: A plane P through p with normal n

• Let q = (x, y, z) be an arbitrary point on the plane P . Then q − p is a vector in
the plane and will thus be perpendicular to n.

• Two vectors are orthogonal iff their dot product is zero, so the plane is defined as

P = {q ∈ R3 | n.(q − p) = 0}.

• Now, for any point q in the plane

0 = n.(q − p) = (a, b, c).(x− x0, y − y0, z − z0),
or

a(x− x0) + b(y − y0) + c(z − z0) = 0.

• So another way to write the nonparametric equation of a plane, is

ax+ by + cz = d,

where d = ax0 + by0 + cz0. This is called the point-normal equation of the
plane.
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Hyperplanes.

• We saw a line in R2 can be written as

a1x1 + a2x2 = d

and a plane in R3 can be written in point-normal form as

a1x1 + a2x2 + a3x3 = d.

• Generalizing, a hyperplane in Rn can be written in point-normal form as

a1x1 + a2x2 + · · ·+ anxn = d,

where (a1, a2, . . . , an) is a normal.

– The set of vectors in the hyperplane have tail at (0, . . . , 0, d/an) and are
perpindicular to the normal vector to the hyperplane.

Example 1.

1. An economic application you have probably seen deals with commodity spaces.

• The vector
x = (x1, x2, . . . , xn)

of nonnegative quantities of n commodities is called a commodity bundle.
The set of all commodity bundles is the set

{(x1, . . . , xn) | x1 ≥ 0, . . . , xn ≥ 0}

and is called a commodity space.

• Let pi > 0 be the price of commodity i. The cost of buying bundle x is

p1x1 + p2x2 + · · ·+ pnxn = p · x.

A consumer with income I can purchase only bundles x for which p·x ≤ I .
This subset of the commodity space is the consumer’s budget set.

1. • The budget set is bounded above by the hyperplane p·x = I , whose normal
vector is the price vector p.
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x1

x2

p = (p1, p2)

p1x1 + p2x2 = I

Figure 12: A consumer’s budget set, p · x ≤ I , in commodity space.
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2. • Another hyperplane you will see is the space of probability vectors

Pn = {(p1, . . . , p2) | p1 ≥ 0, . . . , pn ≥ 0 and p1 + · · ·+ pn = 1},

which is called the probability simplex. The probability simplex Pn is part
of a hyperplane in Rn with normal vector (1, 1, . . . , 1). �

p1

p2

p3

1

1

1

Figure 13: The probability simplex for n = 3.
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